Développement :

Théorème de Bernstein pour les séries entières

Analyse & Probabilités

Référence : [GX] GOURDON X., Les maths en tête, Analyse, Ellipses, 2008, p250.

Pour les leçons :

- 218 : Formules de Taylor. Exemples et applications.
- 228 : Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
- 241 : Suites et séries de fonctions, exemples et contre-exemples.
- 243 : Séries entières, propriétés de la somme.

On rappelle la proposition suivante :

Proposition 1. Formule de Taylor avec reste intégral à l'ordre $n \in \mathbb{N}$.

Si $f:[a;b]\subset\mathbb{R}\to\mathbb{C}$ est de classe \mathcal{C}^{n+1} sur [a;b], alors on a:

$$f(b) = \sum_{k=0}^{n} \frac{F^{(k)}(0)}{k!} x^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Cette formule est trouvable dans [GX], page 75.

Théorème 2. Théorème de Bernstein pour les séries entières.

Soient a > 0 et $f :]-a; a[\to \mathbb{R}$ une fonction de classe \mathcal{C}^{∞} . Si, pour tout $k \in \mathbb{N}$ et $x \in]-a; a[$, on a $f^{(2k)}(x) \ge 0$, alors f est développable en série entière sur]-a; a[en 0.

PREUVE : Soit $b \in]0; a[$. Soit $F : x \longmapsto f(x) + f(-x)$, définie et de classe C^{∞} sur] - a; a[par somme de fonctions de classe C^{∞} .

F est paire. Donc, pour tout $k \in \mathbb{N}$, $F^{(2k+1)}(0) = 0$.

Soit $x \in]0; b[$. En appliquant la formule de Taylor avec reste intégral à l'ordre 2n + 1 à la fonction F sur [0; x], on obtient :

$$\forall n \in \mathbb{N} \quad F(x) = \sum_{k=0}^{n} \frac{F^{(2k)}(0)}{(2k)!} x^{2k} + R_n(x),$$

où
$$R_n(x) = \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} F^{(2n+2)}(t) dt.$$

Or, pour tout $k \in \mathbb{N}$, $F^{(2k)}(0) = 2f^{(2k)}(0) \geqslant 0$. Donc, pour x = b:

$$F(b) \geqslant R_n(b) \geqslant 0.$$

Ensuite, si $x \neq b$, la fonction $t \longmapsto \frac{x-t}{b-t}$ est décroissante sur [0,x]. Cela permet d'écrire :

$$0 \leqslant R_{n}(x) = \int_{0}^{x} \left(\frac{x-t}{b-t}\right)^{2n+1} \frac{(b-t)^{2n+1}}{(2n+1)!} F^{(2n+2)}(t) dt$$

$$\leqslant \left(\frac{x}{b}\right)^{2n+1} \int_{0}^{x} \frac{(b-t)^{2n+1}}{(2n+1)!} F^{(2n+2)}(t) dt$$

$$\leqslant \left(\frac{x}{b}\right)^{2n+1} R_{n}(b)$$

$$\leqslant \left(\frac{x}{b}\right)^{2n+1} F(b).$$

Comme $0 \leqslant \frac{x}{b} \leqslant 1$, on obtient $\lim_{n \to +\infty} R_n(x) = 0$. Donc :

$$\forall x \in [0; b[F(x) = \sum_{n=0}^{+\infty} \frac{F^{(2n)}(0)}{(2n)!} x^{2n}.$$

F est étant paire, cette égalité est donc valable sur]-b;b[.

Soit $x \in]-b; b[$. Pour $n \in \mathbb{N}$, en appliquant une nouvelle fois la formule de TAYLOR avec reste intégral à f sur [0;x]:

$$f(x) = \sum_{k=0}^{2n+1} \frac{f^{(k)}(0)}{k!} x^k + r_n(x),$$

avec
$$r_n(x) = \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} f^{(2n+2)}(t) dt.$$

Pour $t \in [0;x] \subset]-a; a[$, par positivité de $f^{(2n+2)}(t)$, on a :

$$0 \leqslant f^{(2n+2)}(t) \quad \leqslant \quad f^{(2n+2)}(t) + f^{(2n+2)}(-t)$$
$$\leqslant \quad F^{(2n+2)}(t).$$

Donc:

$$0 \leqslant r_n(x) \leqslant R_n(x)$$
 $\underset{n \to +\infty}{\longrightarrow} 0.$

En notant, pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$, on a donc montré que :

$$\lim_{n \to +\infty} S_{2n+1}(x) = f(x).$$

Or, pour tout $n \in \mathbb{N}^*$, on a :

$$S_{2n}(x) - S_{2n-1}(x) = \frac{f^{(2n)}(0)}{(2n)!} x^{2n}$$

 $= \frac{F^{(2n)}(0)}{2(2n)!} x^{2n}$
 $\underset{n \to +\infty}{\longrightarrow} 0,$

car $\sum_{n \in \mathbb{N}} \frac{F^{(2n)}(0)}{(2n)!} x^{2n}$ est convergente.

Comme $(S_{2n-1}(x))_{n\in\mathbb{N}}$ converge vers f(x), on en déduit que $(S_{2n}(x))_{n\in\mathbb{N}}$ converge aussi vers f(x).

Les suites $(S_{2n}(x))_{n\in\mathbb{N}}$ et $(S_{2n+1}(x))_{n\in\mathbb{N}}$ convergent donc vers f(x). On en déduit que la série de fonctions $\sum_{n\in\mathbb{N}} \frac{f^{(n)}(0)}{n!} x^n$ converge simplement vers f sur]-b;b[, pour tout $b\in]-a;a[$. C'est donc le cas sur]-a;a[, ce qui achève la preuve.

Application 3. Existence du développement en série entière de la fonction tangente en zéro.

tan est développable en série entière sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ en 0.

PREUVE: La fonction $f := \tan' = 1 + \tan^2$ est de classe \mathcal{C}^{∞} sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. D'après la formule de LEIBNIZ, on a, pour tout $n \in \mathbb{N}^*$:

$$f^{(n)} = \tan^{(n+1)} = \sum_{k=0}^{n} {n \choose k} \tan^{(k)} \tan^{(n-k)}.$$

Par récurrence forte, on obtient que pour tout $n \in \mathbb{N}$, $\tan^{(n)}$ est positive sur $\left[0; \frac{\pi}{2}\right[$.

Comme tan est impaire, les $\tan^{(2k+1)} = f^{(2k)}$ $(k \in \mathbb{N})$ sont des fonctions paires sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, donc positives sur ces intervalles.

D'après le théorème de BERNSTEIN pour les séries entières, la fonction \tan' est développable en série entière sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ en 0.

Par conséquent, tan est développable en série entière sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ en 0.